Posts Tagged ‘avr-gcc’

FIX: Include error in Eclipse after upgrading GCC

Just writing a quick post today. I’ve had an error for quite a while that’s been bugging me, and I finally got around to figuring out how to fix it. It’s kind of like when your copilot gets fleas – it bugs you, but sometimes you just deal with it because of more pressing issues.

I was trying to work around a problem a while back that I though would be fixed by upgrading the version of AVR-GCC I was using. While I got the new version working (4.3.5), it had removed the old version (4.3.4) and for the past few months I’ve constantly had to ignore warnings about not being able to find include folders.

The error was something like:

"Include path not found" /usr/lib/gcc/avr {version specific etc...}

The fix is pretty simple.  I found the solution here, but I didn’t follow it exactly.  It asks you to delete the following file – I didn’t want to risk losing any workspace settings, so I modified it instead.

  1. Open up your workspace.
  2. Open the file:  ${workspace}/.metadata/.plugins/org.eclipse.cdt.make.core/${projectname}.sc
  3. Find all the references to your old library path.  I found three references near the top of the file – simply delete those lines.
  4. Restart Eclipse.
Categories: General, How-To Tags: , ,

Life Update and Checkerbot Follow Up

Wow, it’s been altogether too long since I’ve posted.  Fortunately, and this is important, I’ve been able to spend a lot of great, quality time with my family.  We recently had a great time at the Oregon Beach and at the A.C. Gilbert Children’s Museum since my return from interning at the Robotics Institute at Carnegie Mellon University. (No, really, I was there!)  I’d been away from the wife and kid (“kids” including the one due in September!) for about a month, and it was great to be back.

For just a paragraph or two, I’ve gotta spill some philosophy.  Even before you have a family, and especially after you start one, hopefully everything you’re doing is for their current or future benefit.  There is nothing that can replace the fulfillment of a loving family, and like all great things, it requires preparation.  An interesting point of fact that is that Sam Walton, someone who spent his whole life innovating and who founded the largest retail chain in the world Wal-Mart, determined that he failed in life.  His last three words, given on his death bed while surrounded by his family that he hardly knew, were “I blew it!”

No one’s perfect, it’s just important to be making progress rather than regress.  New goal in life for me: Don’t blow it.  I gotta make a little bit more effort in that area, and I’m thinking even just a random act of kindness or two a day for the people I love will help.  Now, go to your room and think about it for 10 minutes, then come back and read the rest of my post. ;)

Me standing next to Boss, winner of the 2007 DARPA Urban ChallengeI had an amazing time at the Robotics Institute.  That’s me next to Boss, the autonomous Chevy Tahoe that won the DARPA Urban Challenge a few years back.  It drove itself, without collision and following all normal traffic rules, through a 60 mile urban obstacle course.  It is one of the most famous robots alive.  Boss vs Brad: Brad loses.  Boss vs Millenium Falcon: I’d love to see that show up on Youtube…

I got to work with a great group of people on a really fun, agriculture related robotic project.  I’ll probably share more on that in the future, but it’s not for me to talk about yet ;).  Most of the people around me were working on the Google XPrize project, and it was awesome to see that and other jaw-dropping amazing projects in the bay I was in.

I’d like to share a follow up post on how the checker playing robot went.  It was pretty fun, albeit stressful.  We knew at the outset that the chances of successfully navigating this project was 3,720 to 1, but we decided the risk was worth it.  Plus, we figured we could call the support desk to help us get through any ID10T errors.

The robot was based on the new XMega AVR processor.  It has quite a few more features than the standard AVR chips, which also made it a bit more difficult to use.  I recommend AVR processors highly, but unless you need functionality only provided by the XMega series, I would recommend most beginners stick with AVR chips from the ATMega series.  This project, however, needed the higher processing power, the larger RAM, and the higher flexibility of peripheral hardware offered by the XMegas.

I don’t want to repeat too much of the description of the design and process that my lab partners and I went through to do this project – it’s already available on the project website here.  You can download the SolidWorks CAD, EagleCAD, C code, and other project files from there.

So it wasn’t quite capable of playing checkers at the end of the term.  Our grades took a bit of a hit because of that, too, but it was great to try something new and the reason for this design is as follows:  We tried tackling this problem from a user’s point of view, which is something I believe is left out of academic and commercial projects all too often.  Who likes to play checkers?  Children and old men in the park.  Most other robots in the class were gantry or industrial robot arm based and relied on a laptop tether to function, which could never be practical when used by children or the elderly for safety, expense, and ease of use reasons.

Our robot weighed in under a pound and was, at least theoretically, easy to use and setup.  It used AA batteries and would be safe for anyone to use, and not expensive to replace if broken.

Now, if only it had worked :D.  The robot performs computer vision by reading images in from a UART based camera directly into the RAM of the XMega.  The XMega then determines where the checker pieces are at, calculates moves, and then goes out onto the board to execute those moves.  We fell just short of what was needed for full functionality in most areas due to lack of time and lack of experience with certain components.  As you’ll see in the video, poor motor control and localization was the primary point of failure.  Check the project website for a more detailed synopsis of what worked and what didn’t.

In this video, the robot has just captured an image and is moving from the image capture location to the checker board to make a move.  All decisions were autonomous, but the bot was stepped through its motions one step at a time and assisted when its localization or movements were out of place.

XBoot – Quick Start Guide (for a sweet XMega bootloader!)

So in my recent XMega wanderings,  I needed a good bootloader.  After muddling through various app notes and forum postings, I came across the culmination of what I couldn’t do on my own – XBoot!

In my defense, I’ve worked on bootloaders before.  But the errata sheet on the XMegas is longer than the list of men Princess Leia has broken the hearts of.  And I’ve become one of the many casualties of that list.  (Erm, the errata list…  awkward…)

Big thanks to Alex Forencich!  XBoot, a fantastic reincarnation of the AVR1605 app note, is open source and highly configurable bootloader, which at the time of writing is capable of UART or I2C bootloading XMega processors.  I believe his intentions are to expand both processor compatibility and protocol options, so visit the XBoot Google Code project for more info.

I’ll  be going through and explaining the options that I used, so this isn’t an exhaustive tutorial.  This guide assumes you have a working XMega development environment, AVRDude installed, and SVN (if you want to download the code this way).  WinAVR should work just fine with a few minor alterations, but I’ve only tested this on Kubuntu with the development environment described in this previous blog post.  Also, as a side note, I’ve been using XBoot with XBee Series 1 wireless modules and it works fantabulous (that’s so good, I had to come up with a new word for it).


Here’s the step-by-step big picture:

  1. Download the code.
  2. Pick a bootloader entry method.
  3. Configure communication parameters (Port/Baud Rate/I2C addressing, etc.).
  4. Compile & program XBoot onto the MCU.
  5. Send main application via XBoot and AVRDude.

Download the Code

So let’s get started.  Download the code from the XBoot download page and uncompress it, or (my preference) use SVN to download the code:

svn checkout avr-xboot

Configure XBoot

Once the code is downloaded, find the file named “xboot.h”.  Most configuration changes, if not all, will be made here.  We’ll take it one section at a time.  Line item references are from Rev12 out of the repository, but you should be able to match them up to any version.  The idea is that all available options are enabled, so comment out what you won’t be using.

// AVR1008 fixes
// Really only applicable to 256a3 rev A and B devices
//#define USE_AVR1008_EEPROM

Uncomment this line if you’ll be using an XMega256a3.  This fixes certain problems (remember Princess Leia the errata list?). I’ve heard this has hit some people but not others, even on the same silicon revision.  It may be useful for certain other chips and families – YMMV.  Check with Google if concerned.

Line 64:
// bootloader entrance
//#define USE_ENTER_PIN
//#define USE_ENTER_I2C

Here I picked the “USE_ENTER_DELAY” and “USE_ENTER_UART”, hence I commented the other two out.  Note that the “USE_ENTER_DELAY” just puts a delay at the start of the program, and isn’t mutually exclusive with the other options.  Here’s what the options mean:

  • USE_ENTER_DELAY: Delays entry by a timeout.  Timeout is set by “ENTER_BLINK_COUNT” and “ENTER_BLINK_WAIT”, but I found the default settings worked well.
  • USE_ENTER_PIN: Select this option if you want to enter the bootloader when a pin is in a certain state at power on.  Ex: You press a switch when you power cycle to enter the bootloader.  You’ll have to configure which port/pin at line 95, at the section titled “ENTER_PIN”.
  • USE_ENTER_UART: Select this option if you want to enter the bootloader if a character is received on the UART.  This requires using “USE_ENTER_DELAY” by necessity.  You’ll need to configure the UART options at line 111.
  • USE_ENTER_I2C: Select this option if you want to enter the bootloader if a byte is received through I2C.  I haven’t used this option, hence I won’t try to elaborate.

On to the next section:

Line 73:
// bootloader communication
#define USE_LED
#define USE_UART
//#define USE_I2C
//#define USE_ATTACH_LED

I’ll be using the UART and LED, so everything else is commented out.  If you use the LED, configure the next section also:

Line 106:
// LED
#define LED_PORT                PORTA
#define LED_PIN                 0
#define LED_INV                 1

If you’re using the UART, configure this section:

Line 111:
#define UART_BAUD_RATE                  19200
#define UART_PORT                       PORTD
#define UART_DEVICE_PORT                D1
#define UART_DEVICE                     token_paste2(USART, UART_DEVICE_PORT)
#define UART_DEVICE_RXC_ISR             token_paste3(USART, UART_DEVICE_PORT, _RXC_vect)
#define UART_DEVICE_DRE_ISR             token_paste3(USART, UART_DEVICE_PORT, _DRE_vect)
#define UART_DEVICE_TXC_ISR             token_paste3(USART, UART_DEVICE_PORT, _TXC_vect)
#define UART_TX_PIN                     PIN7_bm

Should be pretty self-explanatory.  You should only need to change UART_BAUD_RATE, UART_PORT, UART_DEVICE_PORT, and UART_TX_PIN.  If you use an exotic baud rate (non-standard and/or fast), you might want to change the settings at line 51 and select the 32MHz clock option.

That’s pretty much it for this section!

Compile & Program

This should work if you’re using AVR-GCC in Linux.  I can’t vouch for WinAVR, but it shouldn’t take much to change it.  That said, the only thing that really needs to change in the Makefile is the programmer name and the chip you’re compiling it for:

Line 42:
# MCU name
## MCU = atxmega16a4
## MCU = atxmega32a4
## MCU = atxmega64a1
## MCU = atxmega64a3
## MCU = atxmega64a4
## MCU = atxmega128a1
## MCU = atxmega128a3
## MCU = atxmega128a4
## MCU = atxmega192a1
## MCU = atxmega192a3
## MCU = atxmega256a1
## MCU = atxmega256a3b
MCU = atxmega256a3
#MCU = atxmega64a3
#MCU = atxmega128a1
#MCU = atxmega32a4

For me, I’ve been using the XMega256A3 chip.  At random, I decided to uncomment the atxmega256a3 line.  YMMV.

Line 209:

And I’m using an AVRISP mkII programmer, which is pretty cheap for an authentic Atmel programmer.  It only does PDI programming (no debugging), and needs to be updated to the latest firmware using AVR Studio (sorry, penguins – you’ll have to boot into Windows), but it does the XMega trick right nicely.

To compile and subsequently program:

$ make
$ make program

This should compile and program XBoot into the programmer.  Shazaam!  If you get any errors, feel free to leave me a comment and I’ll try to help you out.

Programming an Application Via XBoot

So now that you’ve got XBoot loaded, you can use AVRDude again to program your application to your XMega:

avrdude -p atxmega64a3 -P /dev/ttyUSB0 -c avr109 -b 19200 -U flash:w:main.hex

For those of you who may have installed Eclipse as described in previous posts, you can make Eclipse use the bootloader by:

  • Click on “Run -> Run Configurations…”
  • Right click on “C/C++ Application” on the left and select “New”
  • In the “Name:” textbox, enter “Program via XBoot”
  • In the “C/C++ Application:” textbox, enter “/usr/bin/avrdude” (or where ever it’s installed if you’re using Windows)
  • Click on the “Arguments” tab.  Enter the following line, modify to suit your needs, and then click “Apply” and “Close”
-c avr109 -p x256a3 -P /dev/ttyUSB0 -b 19200 -e -U flash:w:Debug/eclipse_project_name.hex

There you have it.  As always, if you need any help just ask in the comments below!


svn checkout avr-xboot-read-only

Servo Control with an XMega

I’m not going to go into a long treatise on PWM servo signals – there are plenty of references for that already.  I’d like to focus on a simple way to do a bunch of servos with fairly accurate timings on an XMega.  Also, I know this isn’t an optimal implementation – there are efficiency improvement that could be made on almost every front.  But it took me almost no time to come up with, and that says a lot.  I’m more of an idoit than I let on…

The method I’m going to line out below can drive up to 7 servos completely in interrupts.  It’ll use up your timers, but it’s easy peasy and will save you time if you don’t need all your timers for other tasks.

So, we’ve got a standard servo signal that’s composed of basically three stages:

  1. A twenty millisecond low period.
  2. A one millisecond high period.
  3. A variable high period:  To turn the servo to one extreme, force the signal low immediately.  To turn the servo to the opposite extreme, force the signal low after a full millisecond.  To turn it to some point in between, just vary the signal at this point between zero and one milliseconds.

With the advent of the XMega, the AVR series of microcontrollers now have an plethora of peripherals, notably for this article eight 16-bit timers.  EIGHT!  That’s power, baby.  For this example, I’ll only do two servos, which will require three timers.  That seems like a lot because with most ATMegas, that was about it – you only had 4 timers, and only two of those were 16-bit (and 8-bit timers == headaches

I started from App Note AVR1306, which describes the timers.  BTW, app notes are the way to become familiar with the XMegas, especially if you’re coming up from the previous AVR families.  Download the drivers along with the PDF, they’re pretty useful.  Include these in your project.  I’ve used these with only a few modifications, and they’ve worked pretty well for me so far.

Set up a global array that can be used for servo position variables:

volatile uint16_t servo[3];

Note it’s declared volatile – this is necessary for all variables you’ll be using between the main loop and an interrupt service routine.  Also note that I declared 3 spaces for two servos – on this particular one, I liked labeling the servos “Servo1”, “Servo2”, etc. instead of base zero.  Personal preference, but adding the extra byte keeps the numbering consistent between labels and array index.

Next up is the timer initialization routine.  Let’s look at it first.  The comments are fairly explanatory, and I’ll go through it a little more afterwards:

/*! \brief This function initializes timers for use as servo PWM signal drivers.
 *    This function initializes timers for use as servo PWM signal drivers.
 *    It probably wouldn't hurt to improve this by making it modular at some point...
 *    - TimerD0: 20ms servo timer.  This timer triggers the rest of the servo position timers.
 *    - TimerD1: 1-2ms Servo1 position timer.
 *    - TimerE0: 1-2ms Servo2 position timer.
void init_timers()
    //! TimerD0: 20ms Servo Timer
    TC_SetPeriod( &TCD0, 2500 );                            // Set period (2500 ticks = 20ms)
    TC0_SetOverflowIntLevel( &TCD0, TC_OVFINTLVL_MED_gc );  // Set Interrupt on Overflow
    TC0_ConfigClockSource( &TCD0, TC_CLKSEL_DIV256_gc );    // Set clock and prescaler (8us per tick)

    //! TimerD1: Servo1 Position Timer
    TC1_SetOverflowIntLevel( &TCD1, TC_OVFINTLVL_OFF_gc );  // Set Interrupt on Overflow, but not yet
    TC1_ConfigClockSource( &TCD1, TC_CLKSEL_DIV256_gc );    // Set clock and prescaler (8us per tick)

    //! TimerE0: Servo2 Position Timer
    TC0_SetOverflowIntLevel( &TCE0, TC_OVFINTLVL_OFF_gc );  // Set Interrupt on Overflow, but not yet
    TC0_ConfigClockSource( &TCE0, TC_CLKSEL_DIV256_gc );    // Set clock and prescaler (8us per tick)


So, as the above code lines out, TimerD0 is the 20 millisecond timer.  Every twenty milliseconds, it fires.  When it does, it raises the servo signal and then enables TimerD1 and TimerE0, which subsequently time out the 1ms period + position offset.  These functions all come from the application note mentioned above.  The three functions used to set up TimerD0 sets the period, enables the overflow interrupt at the medium tier, and then sets the prescaler.   Pretty straightforward if you use the driver functions.

Here’s the ISR for TimerD0:

/*! \brief Timer/CounterD0 Overflow interrupt service routine
 *  TimerD0 overflow interrupt service routine.
 *  Set for a 20ms period.  Sets servo output port pin, enables TCD1 which resets the pin.
    uint16_t period;

    /// SERVO1 Timer Enable
    period = 63 + SERVO1_OFFSET + servo[1];                // Calculate period
    SET_SERVO1;                                            // Raise the servo pin
    TC1_SetOverflowIntLevel( &TCD1, TC_OVFINTLVL_MED_gc ); // Set Interrupt on Overflow
    TC_SetPeriodBuffered( &TCD1, period);                  // Start TCD1, set period
    TC1_ConfigClockSource( &TCD1, TC_CLKSEL_DIV256_gc );   // Set clock and prescaler (8us per tick)

    /// SERVO2 Timer Enable
    period = 63 + SERVO2_OFFSET + servo[2];                // Calculate period
    SET_SERVO2;                                            // Raise the servo pin
    TC0_SetOverflowIntLevel( &TCE0, TC_OVFINTLVL_MED_gc ); // Enable timer overflow interrupt
    TC_SetPeriodBuffered( &TCE0, period);                  // Start timer, set period
    TC0_ConfigClockSource( &TCE0, TC_CLKSEL_DIV256_gc );   // Set clock and prescaler (8us per tick)

So, it does the following for both servos:

  • Calculates the period.  If everything were a perfect world, the constant 63 should be 125 (and a #define ;) which, with the prescaler given and a 32MHz clock, should be 1ms.  However, between natural delays in the code and the particular servos I was using, I calibrated that offset to be 63 to get the maximum range.  YMMV.
  • Raises the servo signal pin.  This macro is defined in my header file, and is pretty simple: #define SET_SERVO1 PORTD.OUTSET = PIN5_bm
  • Enables the interrupt
  • Sets the period.  You must use the TC_SetPeriodBuffered for this particular application (can’t remember why off the top of my head).
  • Set the clock source to enable the timer.

Did you notice a subtle difference between the TimerD1 and TimerE0 code?  There are two types of timers in the XMegas – Timer0’s and Timer1’s.  Hence, there are TC0_ prefixes and TC1_ prefixes that must be used for appropriate timers.  I’ll have to refer you to the datasheet, because once again I can’t remember what the difference is – it’s not relevant for this example.

Last, let’s look at the position timer ISR code:

/*! \brief Timer/CounterD1 Overflow interrupt service routine
 *  Timer D1 overflow interrupt service routine.
 *  Ends the Servo1 position pulse and disables itself.
    CLR_SERVO1;                                            // Reset the servo pin low
    TC1_SetOverflowIntLevel( &TCD1, TC_OVFINTLVL_OFF_gc ); // Clear Interrupt on Overflow
    TC1_ConfigClockSource( &TCD1, TC_CLKSEL_OFF_gc );      // Stop clock

There’s not much to it:  Reset the signal low, disable the timer interrupt, and disable the timer clock source.  This all gets re-enabled in about 18-19ms!

Now, from just about anywhere in your program, when you want to update the servo position, you just have to change the value of the appropriate servo[] index.  Here’s an example main loop:

int main(void) {

    int i;
    for (i=0 ; i<20 ; i+=10)
        servo[1] = i;
        servo[2] = i;

I should mention that you need to include “pmic_driver.h” from the PMIC app note AVR1305, and “TC_driver.h” from AVR1306.  Also copy in the matching .c files into the same folder.

That’s really about it.  And it’s easy to add on to this and control another servo:

  1. Add an extra index into the “servos[]” array.
  2. Pick an unused timer and add it to the “timer_init()” function.
  3. Cut, paste, and modify timer code for the new timer in the 20ms timer ISR.
  4. Add an ISR for the new timer, again cutting, pasting, and modifying for the new servo.

That about does it.  It seems to work pretty well for my uses.  Make sure and calibrate the limits on your servo variables so that you maximize your reach (for the servos I tested it with, it was between 0 and 270) .  One problem I had was erratic behavior when it collided with another timer occasionally – this was fixed by adding lifting this up from the “LO” level interrupts to the “MED” level interrupts.  It could also be moved even higher to avoid problems even further.  This is an issue with the XMega, where it wouldn’t necessarily have been with an ATMega, because XMega interrupts have changed and a higher level interrupt can interrupt a lower level interrupt.  Good to keep in the back of your mind as you code…

As always, let me know in the comments if you need any help setting this up.

Categories: How-To Tags: , , , ,

XMega Solution for Kubuntu

29 April 2010 5 comments

Howdy folks.  For any penguin heads out there trying to get an XMega development setup for Linux, I finally got it working, and didn’t even have to compile anything!

My setup is a SparkFun XMega breakout board ($25) and an AVRISP mkII programmer, which I bought from Mouser (~$35) specifically for the new PDI programming.  Seems Atmel ditched the venerable ICSP programming method with these new chips.  The AVRISP mkII can program over the new “Programming and Debugging Interface”, but can’t debug.  If you want to be able to debug over the PDI interface, go for the JTAGICE mkII or another programmer.

I’m running Kubuntu Linux 9.10.  This solution probably won’t be all that useful for that long, because I imagine (but haven’t checked so I don’t know for sure) that Kubuntu 10.04 will have these updated packages.  Regardless, some of the advice that follows will still be pertinent to some people.

So here’s what I’m going to do: Set up my Kubuntu 9.10 installation to be able to compile for XMegas using AVR-GCC, program XMegas using AVRDude, and use Eclipse as an IDE for all this.

Install AVR-GCC and AVRDude

Since the packages in the Kubuntu 9.10 repository aren’t up to date enough to work with the XMega, we’ve got to get them from somewhere else.  I default to the Debian repositories, which 9/10 times work with Kubuntu.  I’m not sure if there are other packages you need installed, because I started with a working standard AVR and GCC development environment already working.  If installing these packages complains about dependencies (beyond those in the list below), using “apt-get” to install them from the normal repository should be fine.

Download the following “squeeze” packages for your system from here:

NOTE: Just install these from the repository using apt-get if using Kubuntu version 10.04.

There’s a specific order you have to install these in – I can’t remember exactly what it is.  Right click on the files in Dolphin (or, as I prefer to use, Konqueror) and use the GDebi package installer to install these files graphically, or dpkg to install from the command line.  Once these are installed, you can compile and program your XMegas from the command line!

Install Eclipse and AVR Plugins

Eclipse has some features that I’ve heard are pretty nice.  Traditionally, I’ve used and really liked KATE (KDE Advanced Text Editor), and recently I’ve gotten hooked on VIM, but I’m not a bigot about things I haven’t tried.  So here’s me trying Eclipse for AVR programming.

First stop, install Eclipse.  You’ll want Eclipse CDT, which is geared towards C/C++ development instead of Java.  You can download it here.  Install it by extracting it, pretty much anywhere.  I installed it into my development tools folder – another standard place is the opt folder (/opt/eclipse).  Further instructions on this can be found on this UbuntuForums post.

Once Eclipse is installed, you’ll want to add the AVR plugin.  Follow these instructions.

Start a New AVR Project

To start a new AVR project for an XMega, follow these steps:

  1. Click “File -> New -> C Project”
  2. Enter a new project name, and under the “AVR Cross Target Application” select “Empty Project”.  AVR-GCC Toolchain should be selected on the right side.  Click “Next”.
  3. Click “Advanced settings…”
  4. Click the “AVR->AVRDude” option on the left.
    1. Under the “Programmer” tab, select your programmer.  If it’s not in the list, or the list is empty, click “New…” and select your programmer.  For me, it was “Atmel AVR ISP mkII”.  Click “OK”.
    2. The rest of the options under the tab should be left with defaults.
  5. Click the “AVR->Target Hardware” option in the left pane.
    1. Select your processor.  For me, the “ATXMega128A1”.
    2. Select the frequency your processor will run at.  For me, 32MHz.
  6. Click “C/C++ General->Indexer”, then click the link on the top right titled “Configure Workspace Settings”
    1. Check the “Index unused headers” option.
    2. Check the “Index source files not included in the build”.
    3. Check the “Allow heuristic resolution” option, then “OK”.
  7. Click “Next”.
  8. Select your MCU type and frequency (again, I know…)
  9. Click “Finish” to create the project!

Setup Auto Programming

I think there’s another way to make this happen, but I couldn’t figure out how to make it program the chip.  So I did the following as well:

  1. Click “Run->Run Configurations…”.
  2. In the “Name:” box, type “Program Chip”.
  3. In the “C/C++ Application:” box, type “/usr/bin/avrdude”.  Make sure the “Connect process input & output to a terminal” is checked.
  4. Under the “Arguments” tab, type the following: “-c avrispmkii -p x128a1 -P usb -e -U flash:w:Debug/<project-name>.hex”
  5. Click “OK”.

Now at this point clicking the “Run” button on the toolbar (or its shortcut, Ctrl-F11) will program the chip.  We’re not out of the woods yet, though.  By default, a program needs root privileges to access USB devices.  So when you hit Run, it will ask you to enter your password (which will, stupidly, appear in plain text).  To make the AVR-ISP mkII programmer available to mere mortal (non-root) users, do the following:

1.  Open a terminal.  Start a text editor as root to create the file “/etc/udev/rules.d/50-usbavrispmkII.rules”.  For example:

> sudo kate /etc/udev/rules.d/50-usbavrispmkII.rules

2.  Paste the following into the editor:

SYBSYSTEM=="usb", SYSFS{idVendor}=="03eb", SYSFS{idProduct}=="2104", GROUP="users", MODE="0666"

3.  Run the following command in the terminal:

> sudo udevadm control --reload-rules

Now there’s no need to enter the password!  To recap, to build without programming hit “Ctrl-B”.  To build and program, hit “Ctrl-F11”.

That’s about all I can think of for settings I use, but if I think of anything else I’ll update the post.

An update to the post:

I found a little item I forgot.  In order for Eclipse to output a hex file (needed for the above instructions to work), you need to go to the project properties -> Settings, then check “Generate HEX file for Flash memory”.  Hit the build button again, and behold the appearance of a hex file.


A very nice feature Eclipse has is that it hyperlinks variables,  functions, and defines when you hold the Ctrl button and click.  For files within your project, it works pretty nice, but usually you already know most of those well because you wrote them.  Step 6 above allows the  indexer to look through the AVR include folder as well.  This makes any standard definition of a port, register, enum, or struct (of which there are many) easy to find.

Also, you don’t have to manage your makefiles.  Eclipse will take care of all that for you, so you just have to worry about programming.  One thing I haven’t figured out yet is how to get it to get the equivalent of  “make clean && make all && make program” happen, which I typically use when doing AVR programming.  I periodically have to use the “Clean…” menu option when things start acting strange.

As a side, make sure to check out the XMega app notes on the Atmel website, and download both the PDF and the source code.  I’ve found myself primarily using their drivers, which has really sped up getting started with this chip (even though the drivers do have their limitations).

Happy programming!  I imagine this post will be the cause of a lot of late night hacking and Mtn Dew sales …